Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.107
Filtrar
1.
Viruses ; 15(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36680268

RESUMO

The cessation of measles virus (MeV) vaccination in more than 40 countries as a consequence of the COVID-19 pandemic is expected to significantly increase deaths due to measles. MeV can infect the central nervous system (CNS) and lead to lethal encephalitis. Substantial part of virus sequences recovered from patients' brain were mutated in the matrix and/or the fusion protein (F). Mutations of the heptad repeat domain located in the C terminal (HRC) part of the F protein were often observed and were associated to hyperfusogenicity. These mutations promote brain invasion as a hallmark of neuroadaptation. Wild-type F allows entry into the brain, followed by limited spreading compared with the massive invasion observed for hyperfusogenic MeV. Taking advantage of our ex vivo models of hamster organotypic brain cultures, we investigated how the hyperfusogenic mutations in the F HRC domain modulate virus distribution in CNS cells. In this study, we also identified the dependence of neural cells susceptibility on both their activation state and destabilization of the virus F protein. Type I interferon (IFN-I) impaired mainly astrocytes and microglial cells permissiveness contrarily to neurons, opening a new way of consideration on the development of treatments against viral encephalitis.


Assuntos
Sistema Nervoso Central , Vírus do Sarampo , Sarampo , Animais , Cricetinae , Humanos , Encéfalo , Sistema Nervoso Central/virologia , Interferons/metabolismo , Vírus do Sarampo/fisiologia , Proteínas Virais de Fusão/genética
2.
J Virol ; 96(17): e0095722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975998

RESUMO

HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.


Assuntos
Sistema Nervoso Central , Infecções por HIV , HIV-1 , Inflamação , Macrófagos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Interferon-alfa/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/virologia , Glicoproteínas de Membrana/metabolismo , Microglia/citologia , Microglia/virologia , RNA-Seq , Receptores de HIV/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(24): e2201862119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671427

RESUMO

Hepatitis E virus (HEV) is an important but understudied zoonotic virus causing both acute and chronic viral hepatitis. A proportion of HEV-infected individuals also developed neurological diseases such as Guillain-Barré syndrome, neuralgic amyotrophy, encephalitis, and myelitis, although the mechanism remains unknown. In this study, by using an in vitro blood-brain barrier (BBB) model, we first investigated whether HEV can cross the BBB and whether the quasi-enveloped HEV virions are more permissible to the BBB than the nonenveloped virions. We found that both quasi-enveloped and nonenveloped HEVs can similarly cross the BBB and that addition of proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has no significant effect on the ability of HEV to cross the BBB in vitro. To explore the possible mechanism of HEV entry across the BBB, we tested the susceptibility of human brain microvascular endothelial cells lining the BBB to HEV infection and showed that brain microvascular endothelial cells support productive HEV infection. To further confirm the in vitro observation, we conducted an experimental HEV infection study in pigs and showed that both quasi-enveloped and nonenveloped HEVs invade the central nervous system (CNS) in pigs, as HEV RNA was detected in the brain and spinal cord of infected pigs. The HEV-infected pigs with detectable viral RNA in CNS tissues had histological lesions in brain and spinal cord and significantly higher levels of proinflammatory cytokines TNF-α and interleukin 18 than the HEV-infected pigs without detectable viral RNA in CNS tissues. The findings suggest a potential mechanism of HEV-associated neuroinvasion.


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central , Vírus da Hepatite E , Hepatite E , Animais , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/virologia , Células Endoteliais/virologia , Hepatite E/virologia , Vírus da Hepatite E/patogenicidade , Humanos , RNA Viral/genética , Suínos , Fator de Necrose Tumoral alfa/metabolismo
4.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632761

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Sistema Nervoso Central , Tropismo Viral , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/complicações , Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/virologia , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Síndrome Pós-COVID-19 Aguda
5.
Cell Mol Biol Lett ; 27(1): 10, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109786

RESUMO

The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Sistema Nervoso Central/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Virais/genética , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/uso terapêutico , Basigina/genética , Basigina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia , Efrinas/genética , Efrinas/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Fatores Imunológicos/uso terapêutico , Inflamassomos/genética , Inflamassomos/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Transdução de Sinais
6.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35063125

RESUMO

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Assuntos
Barreira Hematoencefálica/virologia , Sistema Nervoso Central/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Anticorpos/farmacologia , Benzamidinas/farmacologia , COVID-19/patologia , COVID-19/virologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Guanidinas/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos
7.
J Virol ; 96(4): e0196921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935438

RESUMO

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Viroses do Sistema Nervoso Central/imunologia , Microglia/imunologia , SARS-CoV-2/fisiologia , Replicação Viral/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Quimiocinas/genética , Quimiocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Microglia/virologia , Neurônios/imunologia , Neurônios/virologia , Replicação Viral/genética
8.
J Stroke Cerebrovasc Dis ; 31(1): 106163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34763262

RESUMO

The SARS-CoV-2 virus, which causes Coronavirus disease 2019 (COVID-19), has resulted in millions of worldwide deaths. When the SARS-CoV-2 virus emerged from Wuhan, China in December 2019, reports of patients with COVID-19 revealed that hospitalized patients had acute changes in mental status, cognition, and encephalopathy. Neurologic complications can be a consequence from overall severity of the systemic infection, direct viral invasion of the SARS-CoV-2 virus in the central nervous system, and possible immune mediated mechanisms. We will examine the landscape regarding this topic in this review in addition to current understandings of COVID-19 and hemostasis, treatment, and prevention, as well as vaccination.


Assuntos
COVID-19 , Sistema Nervoso Central/virologia , Doenças do Sistema Nervoso , Trombofilia/prevenção & controle , Anticoagulantes , Hemostasia , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , SARS-CoV-2 , Trombofilia/diagnóstico
9.
Int J Neuropsychopharmacol ; 25(1): 1-12, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648616

RESUMO

From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.


Assuntos
COVID-19/virologia , Viroses do Sistema Nervoso Central/virologia , Sistema Nervoso Central/virologia , Sistemas Neurossecretores/virologia , SARS-CoV-2/patogenicidade , Anti-Inflamatórios/uso terapêutico , Antidepressivos/uso terapêutico , Antivirais/uso terapêutico , COVID-19/fisiopatologia , COVID-19/psicologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Viroses do Sistema Nervoso Central/tratamento farmacológico , Viroses do Sistema Nervoso Central/fisiopatologia , Viroses do Sistema Nervoso Central/psicologia , Interações Hospedeiro-Patógeno , Humanos , Neuroimunomodulação , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiopatologia , Prognóstico , Fatores de Risco , Internalização do Vírus , Tratamento Farmacológico da COVID-19
10.
Cell Mol Neurobiol ; 42(3): 489-500, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32772307

RESUMO

The world faces an exceptional new public health concern caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), subsequently termed the coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). Although the clinical symptoms mostly have been characterized, the scientific community still doesn´t know how SARS-CoV-2 successfully reaches and spreads throughout the central nervous system (CNS) inducing brain damage. The recent detection of SARS-CoV-2 in the cerebrospinal fluid (CSF) and in frontal lobe sections from postmortem examination has confirmed the presence of the virus in neural tissue. This finding reveals a new direction in the search for a neurotherapeutic strategy in the COVID-19 patients with underlying diseases. Here, we discuss the COVID-19 outbreak in a neuroinvasiveness context and suggest the therapeutic use of high doses of melatonin, which may favorably modulate the immune response and neuroinflammation caused by SARS-CoV-2. However, clinical trials elucidating the efficacy of melatonin in the prevention and clinical management in the COVID-19 patients should be actively encouraged.


Assuntos
Tratamento Farmacológico da COVID-19 , Sistema Nervoso Central/virologia , Melatonina/uso terapêutico , SARS-CoV-2/patogenicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Fármacos do Sistema Nervoso Central/farmacologia , Fármacos do Sistema Nervoso Central/uso terapêutico , Viroses do Sistema Nervoso Central/tratamento farmacológico , Viroses do Sistema Nervoso Central/patologia , Humanos , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
PLoS Pathog ; 17(12): e1010105, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34874976

RESUMO

HIV-1 replication within the central nervous system (CNS) impairs neurocognitive function and has the potential to establish persistent, compartmentalized viral reservoirs. The origins of HIV-1 detected in the CNS compartment are unknown, including whether cells within the cerebrospinal fluid (CSF) produce virus. We measured viral RNA+ cells in CSF from acutely infected macaques longitudinally and people living with early stages of acute HIV-1. Active viral transcription (spliced viral RNA) was present in CSF CD4+ T cells as early as four weeks post-SHIV infection, and among all acute HIV-1 specimens (N = 6; Fiebig III/IV). Replication-inactive CD4+ T cell infection, indicated by unspliced viral RNA in the absence of spliced viral RNA, was even more prevalent, present in CSF of >50% macaques and human CSF at ~10-fold higher frequency than productive infection. Infection levels were similar between CSF and peripheral blood (and lymph nodes in macaques), indicating comparable T cell infection across these compartments. In addition, surface markers of activation were increased on CSF T cells and monocytes and correlated with CSF soluble markers of inflammation. These studies provide direct evidence of HIV-1 replication in CD4+ T cells and broad immune activation in peripheral blood and the CNS during acute infection, likely contributing to early neuroinflammation and reservoir seeding. Thus, early initiation of antiretroviral therapy may not be able to prevent establishment of CNS viral reservoirs and sources of long-term inflammation, important targets for HIV-1 cure and therapeutic strategies.


Assuntos
Linfócitos T CD4-Positivos/virologia , Sistema Nervoso Central/virologia , Líquido Cefalorraquidiano/virologia , Infecções por HIV/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , HIV-1 , Humanos , Macaca mulatta , RNA Viral/líquido cefalorraquidiano , Vírus da Imunodeficiência Símia
13.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960632

RESUMO

To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechanisms underlying ZIKV-associated pathogenesis of the central nervous system (CNS) are largely unexplored. Getting more insight into the cellular pathways that ZIKV recruits to facilitate infection of susceptible cells will be crucial for establishing an effective treatment strategy. In general, cells secrete a number of vesicles, known as extracellular vesicles (EVs), in response to viral infections. These EVs serve as intercellular communicators. Here, we investigated the role of EVs derived from ZIKV-infected human brain microvascular endothelial cells on the blood-brain barrier (BBB) system. We demonstrated that ZIKV-infected EVs (IEVs) can incorporate viral components, including ZIKV RNA, NS1, and E-protein, and further transfer them to several types of CNS cells. Using label-free impedance-based biosensing, we observed that ZIKV and IEVs can temporally disturb the monolayer integrity of BBB-mimicking cells, possibly by inducing structural rearrangements of the adherent protein VE-cadherin (immunofluorescence staining). Finally, differences in the lipidomic profile between EVs and their parental cells possibly suggest a preferential sorting mechanism of specific lipid species into the vesicles. To conclude, these data suggest that IEVs could be postulated as vehicles (Trojan horse) for ZIKV transmission via the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Barreira Hematoencefálica/virologia , Células Cultivadas , Sistema Nervoso Central/virologia , Células Endoteliais/virologia , Vesículas Extracelulares/virologia , Humanos , Lipidômica , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Infecção por Zika virus/virologia
14.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960633

RESUMO

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Assuntos
Encefalite Viral/imunologia , Herpes Simples/imunologia , Imunidade Inata , Inflamação , Vírus da Raiva/imunologia , Raiva/imunologia , Simplexvirus/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalite Viral/virologia , Herpes Simples/virologia , Humanos , Microglia/imunologia , Microglia/virologia , Neuroglia/imunologia , Neuroglia/virologia , Raiva/virologia , Transdução de Sinais
15.
Microbiol Spectr ; 9(3): e0148721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817277

RESUMO

Viral diseases of the central nervous system (CNS) represent a major global health concern. Difficulties in treating these diseases are caused mainly by the biological tissues and barriers, which hinder the transport of drugs into the CNS. To counter this, a nanobody-mediated virus-targeting drug delivery platform (SWCNTs-P-A-Nb) is constructed for CNS viral disease therapy. Viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), is employed as a disease model. SWCNTs-P-A-Nb is successfully constructed by employing single-walled carbon nanotubes, amantadine, and NNV-specific nanobody (NNV-Nb) as the nanocarrier, anti-NNV drug, and targeting ligand, respectively. Results showed that SWCNTs-P-A-Nb has a good NNV-targeting ability in vitro and in vivo, improving the specific distribution of amantadine in NNV-infected sites under the guidance of NNV-Nb. SWCNTs-P-F-A-Nb can pass through the muscle and gill and be excreted by the kidney. SWCNTs-P-A-Nb can transport amantadine in a fast manner and prolong the action time, improving the anti-NNV activity of amantadine. Results so far have indicated that the nanobody-mediated NNV-targeting drug delivery platform is an effective method for VER therapy, providing new ideas and technologies for control of the CNS viral diseases. IMPORTANCE CNS viral diseases have resulted in many deadly epidemics throughout history and continue to pose one of the greatest threats to public health. Drug therapy remains challenging due to the complex structure and relative impermeability of the biological tissues and barriers. Therefore, development in the intelligent drug delivery platform is highly desired for CNS viral disease therapy. In the study, a nanobody-mediated virus-targeting drug delivery platform is constructed to explore the potential application of targeted therapy in CNS viral diseases. Our findings hold great promise for the application of targeted drug delivery in CNS viral disease therapy.


Assuntos
Amantadina/farmacologia , Viroses do Sistema Nervoso Central/terapia , Viroses do Sistema Nervoso Central/veterinária , Sistemas de Liberação de Medicamentos/métodos , Nodaviridae/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Sistema Nervoso Central/virologia , Encefalite Viral/terapia , Encefalite Viral/virologia , Peixes , Nanotubos de Carbono , Nodaviridae/imunologia , Perciformes/virologia , Anticorpos de Domínio Único/imunologia
16.
Viruses ; 13(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34696521

RESUMO

Coronavirus 2019 (COVID-19) is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly affects the lungs. COVID-19 symptoms include the presence of fevers, dry coughs, fatigue, sore throat, headaches, diarrhea, and a loss of taste or smell. However, it is understood that SARS-CoV-2 is neurotoxic and neuro-invasive and could enter the central nervous system (CNS) via the hematogenous route or via the peripheral nerve route and causes encephalitis, encephalopathy, and acute disseminated encephalomyelitis (ADEM) in COVID-19 patients. This review discusses the possibility of SARS-CoV-2-mediated Multiple Sclerosis (MS) development in the future, comparable to the surge in Parkinson's disease cases following the Spanish Flu in 1918. Moreover, the SARS-CoV-2 infection is associated with a cytokine storm. This review highlights the impact of these modulated cytokines on glial cell interactions within the CNS and their role in potentially prompting MS development as a secondary disease by SARS-CoV-2. SARS-CoV-2 is neurotropic and could interfere with various functions of neurons leading to MS development. The influence of neuroinflammation, microglia phagocytotic capabilities, as well as hypoxia-mediated mitochondrial dysfunction and neurodegeneration, are mechanisms that may ultimately trigger MS development.


Assuntos
COVID-19/complicações , COVID-19/patologia , Sistema Nervoso Central/patologia , Esclerose Múltipla/patologia , Doenças Neurodegenerativas/virologia , Sistema Nervoso Central/virologia , Síndrome da Liberação de Citocina/patologia , Citocinas/sangue , Citocinas/metabolismo , História do Século XX , Humanos , Influenza Pandêmica, 1918-1919/estatística & dados numéricos , Esclerose Múltipla/virologia , Doenças Neurodegenerativas/patologia , SARS-CoV-2/imunologia , Síndrome Pós-COVID-19 Aguda
18.
Trop Biomed ; 38(3): 435-445, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608117

RESUMO

Ever since the first reported case series on SARS-CoV-2-induced neurological manifestation in Wuhan, China in April 2020, various studies reporting similar as well as diverse symptoms of COVID-19 infection relating to the nervous system were published. Since then, scientists started to uncover the mechanism as well as pathophysiological impacts it has on the current understanding of the disease. SARS-CoV-2 binds to the ACE2 receptor which is present in certain parts of the body which are responsible for regulating blood pressure and inflammation in a healthy system. Presence of the receptor in the nasal and oral cavity, brain, and blood allows entry of the virus into the body and cause neurological complications. The peripheral and central nervous system could also be invaded directly in the neurogenic or hematogenous pathways, or indirectly through overstimulation of the immune system by cytokines which may lead to autoimmune diseases. Other neurological implications such as hypoxia, anosmia, dysgeusia, meningitis, encephalitis, and seizures are important symptoms presented clinically in COVID-19 patients with or without the common symptoms of the disease. Further, patients with higher severity of the SARS-CoV-2 infection are also at risk of retaining some neurological complications in the long-run. Treatment of such severe hyperinflammatory conditions will also be discussed, as well as the risks they may pose to the progression of the disease. For this review, articles pertaining information on the neurological manifestation of SARS-CoV-2 infection were gathered from PubMed and Google Scholar using the search keywords "SARS-CoV-2", "COVID-19", and "neurological dysfunction". The findings of the search were filtered, and relevant information were included.


Assuntos
COVID-19/patologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso/virologia , Sistema Nervoso Periférico/patologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anosmia/virologia , Sistema Nervoso Central/virologia , Disgeusia/virologia , Encefalite Viral/virologia , Humanos , Meningite Viral/virologia , Doenças do Sistema Nervoso/patologia , Sistema Nervoso Periférico/virologia , SARS-CoV-2 , Convulsões/virologia
19.
Mediators Inflamm ; 2021: 1267041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483726

RESUMO

HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.


Assuntos
Complexo AIDS Demência/imunologia , Complexo AIDS Demência/virologia , Sistema Nervoso Central/virologia , HIV-1/metabolismo , Proteínas Virais/metabolismo , Complexo AIDS Demência/fisiopatologia , Antirretrovirais/uso terapêutico , Astrócitos/virologia , Sistema Nervoso Central/fisiopatologia , Genoma , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Inflamação , Cinurenina/metabolismo , Macrófagos/virologia , Microglia/virologia , Neurônios/virologia , Oligodendroglia/virologia , Receptores de N-Metil-D-Aspartato/metabolismo , Carga Viral , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
20.
Nat Commun ; 12(1): 5401, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518549

RESUMO

Fast-replicating neurotropic herpesviruses exemplified by herpes simplex virus-1 (HSV-1) naturally infect the central nervous system (CNS). However, most individuals intrinsically suppress the virus during a primary infection and preclude it from significantly damaging the CNS. Optineurin (OPTN) is a conserved autophagy receptor with little understanding of its role in neurotropic viral infections. We show that OPTN selectively targets HSV-1 tegument protein, VP16, and the fusion glycoprotein, gB, to degradation by autophagy. OPTN-deficient mice challenged with HSV-1 show significant cognitive decline and susceptibility to lethal CNS infection. OPTN deficiency unveils severe consequences for recruitment of adaptive immunity and suppression of neuronal necroptosis. Ocular HSV-1 infection is lethal without OPTN and is rescued using a necroptosis inhibitor. These results place OPTN at the crux of neuronal survival from potentially lethal CNS viral infections.


Assuntos
Proteínas de Ciclo Celular/genética , Sistema Nervoso Central/metabolismo , Herpes Simples/genética , Proteínas de Membrana Transportadoras/genética , Animais , Autofagia/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Sistema Nervoso Central/virologia , Chlorocebus aethiops , Células HeLa , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/genética , Neurônios/metabolismo , Neurônios/virologia , Fármacos Neuroprotetores/metabolismo , Interferência de RNA , Células Vero , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...